NASA Contractor Report 181778

Optimal Aeroassisted Coplanar Orbital Transfer
Using an Energy Model

Nesim Halyo and Deborah B. Taylor

(BASA-CR-181778) OPIIBAL lEEClSSISiED_ N89-234¢5
CCELAMNAR CREBITAL TRANSFER USIKC AR BHEE?!
' inforsaticn and Contrcl Systeas
zgch ( CSCL 22C Unclas
G3/13 0211268

Information & Control Systems, Incorporated
28 Research Drive
Hampton, VA 23666

Contract NAS1-17493

May 1989

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665



FOREWORD

The work described in this report was performed by Information & Control Systems,
Incorporated (ICS) under Contract Number NAS1-17493 for the National Aeronautics
and Space Administration (NASA), Langley Research Center, Hampton, Virginia. The
work was sponsored by the Aircraft Guidance and Control Branch of the Guidance and
Control Division. Mr. Richard M. Hueschen was the NASA Technical Representative for
the contract. Dr. Daniel D. Moerder of the Spacecraft Controls Branch also monitored the

technical progress of the work. Dr. Nesim Halyo directed the technical effort at ICS.

ii



TABLE OF CONTENTS

FOREWORD . ¢ civectenesoneeesssoncssestosensossssssonssoassnsscssass oo 11
LIST OF FIGURES. .. cvtveveeeronevescosooosassssossnsasassnncssssnce V
1. INTRODUCTION.......coeveeeseveoccanssasosanscassnonasssconsssss 1
2. EQUATIONS OF MOTION....cciveecsocnsoesnassonsssnsssncsnsnnnes 3

ENERGY AS INDEPENDENT VARIABLE........ceoeeveeevcvcccnccccnee B
3. THE OPTIMIZATION PROBLEM........eccceenenscnncnsssncsassnnsss 9
4. NECESSARY CONDITIONS.....cccceeeecscccnnscsoscssosscsnsssasee 13
5. NUMERICAL RESULTS....ccvcveeotoccsvovassssasscnsssnsscsscsncess 16
6. SUMMARY......ccocvocccscecnncccossrsssssnasoccccnnssssssscnass 19

REFERENCES. .. vvevettcrscsscoosossssecrscosesscssssesssssssssssss 20

PRECEDING PAGE BLANK NOT FILMED

v o “l JNTENJIONALLY BLANK




FIGURE i.
FIGURE 2.
FIGURE 3.
FIGURE 4.

FIGURE 5.

LIST OF FIGURES

page
TYPICAL AEROASSISTED COPLANAR ORBITAL TRANSFER........ 22

OPTIMAL GUIDANCE TRAJECTORY FOR ¢, = .001, c, = 2.0... 23

OPTIMAL GUIDANCE TRAJECTORY FOR ¢ = .001, c, = 1.0... 33

OPTIMAL GUIDANCE TRAJECTORY FOR c¢_ = .001, c, = 0.6... 43

OPTIMAL GUIDANCE TRAJECTORY FOR c_, = .001, c, = 0.0... 53



1. INTRODUCTION

The need for cost-effective and reliable space transportation systems has been accentu-
ated with increasing world-wide competition to exploit space applications and the urgency
of military payloads. The use of aerodynamic rather than propulsive forces to perform
various types of orbit transfer can provide significant advantages in increased payload, re-
duced fuel weight and reduced launch activities. The economic superiority of aeroassisted
orbital transfer over all-propulsive maneuvering has been demonstrated through various
studies [1]-[13].

In the typical aeroassisted coplanar orbital transfer shown in Figure 1, the vehicle is
initially in high earth orbit at radius, ry, when a retro impulse, say AV;, brings the vehicle
into an elliptical orbit with perigee, say r,. Whereas ideally, r, would be the top of the
atmosphere, for practical reasons it would be selected somewhere inside the atmosphere in
a realistic aeroassisted orbital transfer maneuver.

The portion of the orbital transfer of particular interest in this study is the atmospheric
flight portion which starts as the vehicle enters the atmosphere at a radial distance from
the center of the earth, say r,. By appropriate modulation of the lift and drag forces,
the vehicle reduces its speed to a level corresponding to its final lower orbit radius, r,.
The atmospheric trajectory also determines the heating rate which the vehicle skin will be
subjected to. Thus, it is necessary to select a trajectory which does not subject the vehicle
to temperature levels higher than can reasonably be accommodated by the vehicle skin.
At atmospheric exit, the vehicle enters an elliptical orbit with apogee at r3. A circularizing
impulse, AV3, at the apogee puts the vehicle in the desired final orbit.

Aeroassisted coplanar orbit transfer has been studied in [4] where it is determined that

a zero flight path angle at atmospheric exit results in the minimal recircularizing impulse,



AV,, for single impulse maneuvers. Furthermore, the sensitivity of AV, to variations in
the flight path angle is seen to be high.

This result stresses the importance of achieving the appropriate conditions at atmo-
spheric exit. However, off-nominal atmospheric conditions can produce significant pertur-
bations in the actual trajectory of the vehicle. Significant variations in the atmospheric
density profile have been observed in shuttle flights. Such variations from the standard at-
mosphere can result in deviations from the nominal trajectory and perturb the atmospheric
exit conditions. Since stochastic nonlinear optimization techniques are not currently prac-
tical, an alternative is to define an optimal control problem which can generate optimal
trajectories from the current actual state to the desired final state at atmospheric exit, and
thus adjust to off-nominal atmospheric conditions. This strategy requires fast and reliable
algorithms for solving two-point-boundary-value problems (TPBVP), which requires fur-
ther investigation beyond the current study. However, the ability to update the trajectory
would result in small rather than large variations in the exit parameters.

In Section 2, a reduced order model of the equations of motion is developed. This
second order model uses the vehicle’s total energy as the independent variable instead of
time. Reduction of the order has the advantage that it reduces the order of the TPBVP
to be solved. Furthermore, it recognizes that coplanar orbit transfer is a problem of
transferring the vehicle from one energy level to another. The choice of the control value
is intuitively more a matter of how much energy the vehicle must lose rather than what
time it is. .

In Section 3, an optimal control problem to transfer the vehicle from an initial state
to a specified final state is formulated. The necessary conditions are obtained in Section

4, and optimal trajectories are simulated in Section 5.



2. EQUATIONS OF MOTION

In this section, we will develop a set of equations describing the motion of the aero-
assisted orbital vehicle center of mass using total energy as the independent variable rather
than time. These equations of motion will then be used in the formulation of an optimal
control problem, where the control will be defined as a function of total energy. As a result,
although the problem is solved in an open-loop mode, the control is defined in terms of
energy, so that the control value is selected according to the total energy of the vehicle.

The equations of motion which will be used describe the dynamics of the c.g. of
the vehicle in flight within the atmosphere with no propulsive forces used. The general

equations of motion for this case are given by
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where @ is the longitude, ¢ is the latitude, r is the distance from the center of the earth
to the vehicle center of gravity, V is the velocity with respect to the earth, ~ is the local
flight path angle, v is the track angle, x is the bank angle, w is the angular velocity of the
earth, m is the mass of the vehicle, D is the drag force and L is the lift force acting on the
vehicle.

For the case of coplanar orbital transfer considered here, the general equations of
motion can be simplified significantly. First, we assume that a lateral regulator control
system is maintaining the vehicle’s lateral variables near zero by accommodating pertur-
bations due to atmospheric and other effects. This implies the ability to bank the vehicle
by small amounts to correct for small perturbations in the lateral variables. Taking the
initial heading as zero, the latitude, ¢, remains constant and can also be taken as zero.

The remaining equations of motion are (1), (3), (4) and (5). With the latitude/longitude
directions as defined above, the motion of the vehicle is along zero-latitude and the posi-
tion of the vehicle is determined by its longitude and altitude. In the current study, the
longitude of the vehicle as a function of time is not of interest, and can be eliminated from
the model since it does not impact the motion.

Rewriting the remaining equations of motion, we obtain

f = Vsiny (1)
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where the angular rotation of the earth has been neglected and a Newtonian gravitational

model is used, i.e.,

(10)

‘l»' w

g=

in which the gravitational acceleration, g, is expressed in terms of the inverse square law
with g being the product of the gravitational constant and the mass of the earth.
Furthermore, we assume a parabolic drag polar form between the coefficients of drag

and lift:

Cp =Cpo+ KC} (11)
—:—l=%CLpSV2 (12)

S= % , (13)
D = 2Cpp8V? (14)

where p is the atmospheric density, and § is the vehicle’s effective surface area for aero-
dynamic forces, Cp, is the zero-lift or minimum coefficient of drag and K is a coefficient

principally depending on the vehicle configuration shape.

Energy as Independent Variable.

In the model described above, the motion variables r,V and 4 are the dependent
variables; while the time, ¢, is the independent variable. However, it is possible to use
a different independent variable, if some advantages accrue from a different choice. Of
course, the independent variable cannot be selected arbitrarily. Knowledge of the indepen-

dent variable must uniquely determine the value of each of the dependent variables. For



example, altitude cannot be used as the independent variable, since in a standard maneu-
ver, the vehicle crosses the same altitude twice, once when dipping into the atmosphere
at a high velocity and again on its way up to the new orbit at a lower velocity. Thus,
knowing the altitude does not uniquely determine the velocity of the vehicle.

In the following, we will develop a new model of the motion of the vehicle using its
total energy, potential plus kinetic, as the independent variable. First note that energy
is allowable as an independent variable because it is monotonic. Since the aeroassisted
orbital transfer vehicle (AOTV) will use no propulsive forces during its maneuver inside
the atmosphere, the vehicle’s total energy monotonically decreases with time due to at-
mospheric drag. Thus, energy is a one-to-one and invertible function of time; so that the
vehicle has a given energy level only once during the maneuver. Knowing the vehicle’s
energy uniquely determines the value of the dependent variables.

The advantages of using energy as the independent variable are two-fold. First, it
provides a technique of model order reduction analytically without any approximation. In
optimal control problems, reducing the model order by one reduces the order of the two-
point-boundary-value problem which must be solved by two, since the co-state equations
are also reduced by one.

The second advantage is that coplanar orbit transfer intuitively is a problem of energy
management; i.e., it is a problem of going from a high energy level to a lower energy level
by losing some energy to the atmosphere without overheating. Thus, deciding what control
value to use is intuitively more a question of how much energy the vehicle has rather than
what time it is.

Define the vehicle’s total energy, potential plus kinetic, say F as

1 2 1 2 Mmik
- - - == B 5
E 2mV mgr 2mV_ " (15)
2 -
E_V'_& (16)
m 2 r



Differentiating E with respect to time and combining with the equations of motion,

we obtain

E-VD=-VD . (17)

As expected, the time rate of change of the vehicle’s energy is work done by the
aerodynamic forces acting on it; i.e., the force multiplied by the velocity in the direction
of the force.

When performing an aeroassisted coplanar orbit transfer, usually the initial energy
is higher than the final energy. Thus, during the typical maneuver, E progresses in the
negative direction, whereas the standard variational equations for optixha.l control problems
assume the independent variable progressing in the positive direction. To use the standard

equations, we simply make the change of variables

e=-E/m , é=-E/m=VD/m (18)

Now, if the vehicle’s energy and its speed are both known, then its altitude is uniquely

determined from the potential energy. Thus, it can be found that

R

V2
=et o . (19)

Using the chain rule and (19), the equations of motion (7), (8), (9) can be expressed
in term of the speed and flight path angle viewed as functions of energy. After some

manipulation, we obtain
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where the prime “ / ” denotes the derivative with respect to ¢; i.e.,

dv

V’ = 73- 3 (22)
d

5 = ?i} . (23)

It is seen that the second order model in (20), (21) is sufficient to describe the motion
of the vehicle. Note that this reduction in the order of the model has been obtained without
any approximation, by simply using energy as the independent variable.

The atmospheric density, p, is a function of altitude. For the purpose of the optimiza-
tion study, the usual exponential form will be used to describe the atmospheric density

profile with altitude. Thus,

p(h) = po e~HP ’ (245

h=r—rg , (25)
where rz is the average earth radius and § the scale height of the exponential atmosphere.
Since the radial distance, r, is no longer a state variable, the altitude must be expressed

in terms of the model variables.

24
h=grige " (26)
Thus, the two differential equations (20), (21), the quadratic drag polar (12) and the
atmospheric density (24), (26) form a reduced order model describing the motion of the

vehicle center of gravity.



3. THE OPTIMIZATION PROBLEM

The maneuver considered is to transfer the AOTV from high earth orbit to low earth
orbit by grazing through the atmosphere to lose energy. While in high orbit at a radial
distance of r;, a tangential retro impulse, AV;, is applied, which puts the vehicle into an
elliptical orbit with perigee at r,. While ideally, r, would be at the top of the atmosphere,
say r,, realism considerations require a lower altitude which would ensure that the vehicle
dips into the atmosphere sufficiently to loose the required energy within a reasonable period
of time. The vehicle then exits the atmosphere at a lower speed of V, and flight path angle
~¢ starting an elliptical orbit with apogee, r3. When the vehicle reaches rs, a tangential
circularizing impulse, AV,, brings it to the desired circular orbit.

It is well-known that in comparison to the all-propulsive orbit transfer, the aeroassisted
maneuver requires significantly less fuel to achieve the same orbital transfer [4]. Also note
that although AV; is the larger impulse, the variability of this impulse is quite small;
i.e., the variation in AV; which achieves an orbit with a perigee anywhere within the
atmosphere is quite small. On the other hand, the variation in AV; with variations in
the exit flight path angle and velocity is significant. Furthermore, the minimum AV,
impulse occurs when the exit flight path angle, +,, is zero, assuming a single impulse from
atmospheric exit to the low earth orbit [4]. Therefore, it is highly desirable to achieve the
needed exit conditions to reduce the variability in the amount of fuel necessary to ensure
the maneuver.

The atmospheric portion of the orbital transfer is the part of interest in this study.
An important consideration during the atmospheric maneuver is to maintain the vehicle’s
skin temperature at acceptable levels. This is directly related to the heating rate produced
by the atmospheric conditions. On the other hand, off-nominal atmospheric conditions can

produce significant perturbations. Although nonlinear stochastic optimization is the most



direct approach to the treatment of random atmospheric phenomena, it is beyond the
available resources of the current study. Instead, we will define a deterministic optimal
control problem which, if necessary, can be solved on-line to adjust to changing atmospheric
conditions, so that the guidance trajectory may change with varying atmospheres but still
achieve the desired exit conditions. Alternatively, the trajectories may be computed off-
line and stored, although stringent storage requirements would be placed on the on-board
computer.

To accommodate the various objectives and constraints discussed, an optimal control
problem may be posed as follows. Since the exit conditions largely determine the fuel
requirements, the final flight path angle and the speed are considered to be fixed by the
low earth orbit radius, r;. On the other hand, the initial conditions are determined by
the high earth orbit radius, r;. The high entry speed, V4, and flight path angle, va,
are also considered to be fixed by the particular maneuver. The main objective during
the atmospheric maneuver, beyond achieving the atmospheric exit conditions, is to avoid
overheating the vehicle skin. To a lesser extent, it may be of interest to avoid excessive
shear stress on the skin of the vehicle. To achieve these objectives, the cost function is
selected as a linear combination of the square of the heating rate and the drag force acting
on the skin integrated over the entire atmospheric maneuver.

The control is the coefficient of lift, Cr. The coefficient of drag, Cp, is determined
by Cr through (12). Both positive and negative values are allowed for C;. Whether a
negative value of lift is obtained by a negative pitch angle or by a positive pitch angle
with the vehicle flying upside down would depend on the vehicle and implementation
considerations.

Now, the vehicle speed at atmospheric entry determines the initial energy per mass,
say e;. Alternatively, the high earth orbit energy diminished by the impulsive energy
of AV; also determines the energy at atmospheric entry. Similarly, let the energy at

atmospheric exit correspond to e3. Recall that e is the negative of the energy per unit

10



mass, so that e; < e;. Thus,

Vi) =Va , 7(e1) = (27)

Vie) =Ve , ~(e2) = (28)

The heating rate is computed using the expression

Q=AptV: |, A=308x10"* . (29)

A number of different expressions are available for the heating rate which in general, would
depend on further atmospheric variables. Since only the trends are of interest here, (29)
is considered sufficient.

We will use a cost function which is a linear combination of the integrated heating

rate squared and the drag; i.e.,

t3
J= [c; Q2+c2D/m] dat (30)
t

where ¢; and t3 are the initial and final times, respectively.

Since the independent variable is ¢, J must be expressed in terms of e. From (18),

1

dt
de VD/m (31)
Using the chain rule and manipulating,
e3 V3 1 €3
J= / [El— + & —-] de = / 9(V,~,CL)de . (32)
e CD V ey
where
2
51=2A§CI s, €Ga=¢g3 . (33)
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It is interesting that while the final time, ¢, in the original problem would be free, in
the energy model the final energy is fixed. Since the initial and final (or desired) orbits are
known, the amount of energy which must be expended in the atmosphere is also known,
although the duration of the atmospheric maneuver is not fixed, and is a part of the
optimization.

Thus, the problem of obtaining aeroassisted coplanar orbit transfer trajectories can
be posed as the optimal control problem of minimizing the cost function, J, in (32) while

satisfying the constraints (20), (21), (27) and (28).

12



4. NECESSARY CONDITIONS

Using standard variational calculus texts [14], [15], it is possible to determine con-
ditions which are necessary for optimality. Following this approach, the Hamiltonian, X,

is

H(V, 7%, CL,pv oy €) = 9(V,1,CL) +pv V' + P4 (34)

where p is the co-state vector defined by

dpy N
P’v = 76— = —EV(V"LCL,PV,I,‘N e) . (35)

Substituting (32), (20) and (21) into (34), the Hamiltonian for the problem is found
to be

1
)'((V"Y’ CL»?V’p'nc) = hl(vy'y’pVapqse)a;

C
+ h2(Va Yy stp'y) (6%) + ha(V, ’Y,PV,P-y) (36)
V2 +2? (V4 — 463
hy(V, ’ ’ =¢é Vs— i -[————_— S 37
1(Vy7,pv,py€) =& Ty TR bt rpy 77 (37)
_Pq
h2(V7'7’pV’p‘7) - V (38)
_C—pv
h3(V)'77pVap'7) - vV (39)

The differential equations for the co-state vector can be obtained from (35)-(39).

13
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Note that the atmospheric density, p, is a function of V and e; so that the rate of

change of p with V directly enters the co-state equation for py.

&, 1 .\ ___ 4av 1
AV L [ GCFS L (42)

From Pontryagin’s minimum principle, the minimal cost occurs when the Hamiltonian
is minimized within the allowable control set while the state and co-state are on the
optimal trajectory; i.e., minimize ¥(V*,v*,CL, py,, p;,¢) over the allowable set of Cy’s.

First consider the optimal Cy with no constraints on Cy.

X . 4 * * _ CL . CL 2 » h;
BCL(V 15, CL, Py Py, €) = 2KC%"1 ZK(CD) hy + o (43)

where h} and h} are (37) and (38) respectively, evaluated on the optimal trajectory.
Setting (43) to zero results in

R r:\?  Cpo
Cr="% \/(h;) K 44

Note that the negative sign in front of the discriminant always produces a negative Cy,

while the positive sign results in a positive C value. Observation of (36) shows that the

minimal ¥ occurs when
hiCL <0 - (45)
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since Cp is always positive. It follows that the root which corresponds to the minimum is

given by

.__(M o /()" . Coo
et =-(ii) s“"("’)\/(h;) i #9)

Now, suppose that Cy, is limited to be within [CLmins CLmaz], Where CL mqz is positive
and CLmin is negative. The minimal Cy, for this case is easily obtained by analyzing the
gradient 8 ¥ /3 Cy, in (43). Rewriting this gradient in the form

ox (Kh3)C2 + (2Kh})CL — h3Cpo

s cT : (47)

Suppose h} is negative, then the gradient has two zeroes, C;_ and Cr . corresponding
to the sign selected in (44). Note that C_ is negative while Cr, is positive. The basic
shapes of the gradient and the Hamiltonian lead to a value of C; > 0 which is limited by

CLmaz- A similar analysis for the case of A3 being positive results in

CiL, Cimin £CL £ CLmas
CE, =4 CLimazs CL > CLmasz (48)
CLminy CL < ClLmin

where C, is given by (46).

The necessary conditions for the optimal trajectory are given by the state equations
(20), (21), the co-state equations (40), (41), and the control equations (46), (48), with the
initial and final state satisfying (27) and (28). Thus, the necessary conditions specify the
two-point-boundary-value problem given above. The sufficiency of these conditions is not

treated here.

15




5. NUMERICAL RESULTS

To obtain the optimal guidance trajectories resulting from the optimal control problem
posed, the necessary conditions were solved using a standard two-point-boundary-value
problem (TPBVP) solver. The TPBVP solutions were obtained with shooting techniques
[16] using the OPTSOL software package.

The problem considered was a typical coplanar orbit transfer from high earth orbit to
low earth orbit using aeroassist to achieve the maneuver. The initial circular orbit is at an
altitude of 22,366 km over the earth surface, while the low earth orbit is at an altitude of
715.6 km. The atmospheric entry conditions resulting from this initial orbit were selected
to be a speed of 10 km/sec and flight path angle of -68° by choosing a target perigee at a
radial distance of 6406.5 km from the earth center.

The atmospheric exit conditions are specified by the speed of 8 km/sec and flight
path angle of 0.01 rad or 0.57° to ensure a slightly positive flight path angle to exit the
atmosphere. The top of the atmosphere was selected at 127 km or a radial distance of
6498 km. The atmospheric scale height was set at 7.5 km with the zero altitude density
po corresponding to 7.769 x 10! kg/km3.

The vehicle parameters Cp, and K were set respective values of 0.05 and 1.4. The
maximum lift-to-drag ratio for the vehicle was 1.9. The effective mass to vehicle area ratio
used was 300 kg/m?.

Since the initial condition of the state, y, is specified, solving the TPBVP consists
of finding the initial co-state values which will drive the 4** order staté/co-state system
of differential equations to the desired final state. Since the co-state equations integrated
forward, are usually unstable, the solution of TPBVP’s is a difficult problem. Significant

convergence problems were, in fact, encountered in solving the necessary conditions.
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The sensitivity of the optimal initial co-state vector to changes in the problem pa-
rameters was found to be high. A consequence of this sensitivity is that the radius of
convergence of the shooting algorithm for the problem considered was relatively low. So
that when parameters such as the drag coefficient Cp, or the scale height, §, of the at-
mospheric density are varied by small amounts, the algorithm does not converge; this was
found to be the case particularly at lower values of the scale height. Although a complete
study was not made, multiple shooting did not significantly modify this situation. On the
other hand, in many cases, the rate of convergence of the single shooting algorithm was

fast, requiring under ten iterations.

A parametric study of the optimal guidance trajectories for different linear combina-
tions of the heating rate versus the drag terms in the cost function was performed. The
optimal trajectories obtained are shown in Figures 2-5. The proportions of the heating
rate (squared) and drag were varied by fixing &; at .001 while &; takes on the values of
2.0, 1.0, 0.6 and 0.0. Recall that when &; vanishes the cost function minimizes only the
heating rate term. As &; increases, the cost function contains greater proportions of the
drag force term so that the shear stress on the skin is also included as as objective.

The basic features of all the trajectories are similar. The speed is reduced from 10
km/sec to 8 km/sec slowly at first, then at a higher rate until reaching approximately 8.2
km/sec. At that point, the curve flattens considerably, slowly moving towards its final
value at 8. Similarly, the flight path angle is increased until it reaches nearly + 1.4°. At
this point, a rather sharp or decisive reversal of the trend brings the flight path angle to
a flat curve until atmospheric exit.

The heating rate increases as the vehicle dips into the atmosphere. However, it remains
under 100 W/cm? throughout the atmospheric maneuver. This level is satisfactory, as
much higher rates can be accommodated. The coefficient of lift starts near a value of two
and remains there initially until it drops and settles near a negative value of -0.5. The

trajectories shown here correspond to the unconstrained control case. Due to convergence
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problems and time constraints, the constrained control cases were not obtained.

As the proportion of the heating rate versus drag is increased, the essential character
of the trajectory remains unchanged. The main difference is seen in the duration of the
maneuver which increases as the drag term is phased out. Also note that the final flat
portion of the trajectory is lengthened while the prior portion is slightly shortened in time.
However, the heating rate is largely unchanged and remains safely under 100 W/cm? in
all the trajectories. The altitude profile tends to become slightly more flat at the end of

the maneuver when &; = 0.
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6. SUMMARY

The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer
have been investigated. The equations of motion for the problem are expressed using a
new reduced order model using total vehicle energy, kinetic plus potential, as the indepén—
dent variable rather than time. The order reduction is achieved analytically without an
approximation of the vehicle dynamics.

In this model, the problem of coplanar orbit transfer is seen as one in which a given
amount of energy must be transferred from the vehicle to the atmosphere during the
trajectory without overheating the vehicle. An optimal control problem is posed where
a linear combination of the integrated square of the heating rate and the vehicle drag is
the cost function to be minimized. The necessary conditions for optimality are obtained:
These result in a 4** order two-point-boundary-value problem.

A parametric study of the optimal guidance trajectory in which the proportion of the
heating rate term versus the drag varies is made. The problem considers transferring the
vehicle from an orbit at an altitude of 22,366 km to one at an altitude of 715.6 km in a
two impulse aeroassisted maneuver. Sensitivity and convergence problems of the shooting

algorithm are discussed. Simulations of the guidance trajectories are presented.
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